<u>Chapter 2:</u> Matrix Algebra

Sec. 2.4: Matrix Inverses

Definition 2.11 Matrix Inverses

If A is a square matrix, a matrix B is called an **inverse** of A if and only if

AB = I and BA = I

A matrix A that has an inverse is called an **invertible matrix**.⁸

Ex 1: Show that
$$B = \begin{bmatrix} -1 & 1 \\ 1 & 0 \end{bmatrix}$$
 is an inverse of $A = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}$

Ex 2: Show that
$$A = \begin{bmatrix} 0 & 0 \\ 1 & 3 \end{bmatrix}$$
 has no inverse

Theorem 2.4.1

If *B* and *C* are both inverses of *A*, then B = C.

Ex 3: If
$$A = \begin{bmatrix} 0 & -1 \\ 1 & -1 \end{bmatrix}$$
, show that $A^3 = I$ and so find A^{-1}

Formula for the inverse of a 2×2 matrix

Let
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
 and define det $A = ad - bc$ and $adj A = \begin{bmatrix} d & -b \\ -c & -a \end{bmatrix}$

Then A^{-1} only exists if det $A \neq 0$. In this case, $A^{-1} = \frac{1}{\det A} a dj A$.

<u>Ex 4</u>: Find the inverse of the following 2×2 matrices...

a)
$$A = \begin{bmatrix} 4 & 6 \\ 2 & 3 \end{bmatrix}$$
 b) $B = \begin{bmatrix} 4 & -3 \\ -2 & 1 \end{bmatrix}$

<u>Ex 5</u>: If $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$, show that A has an inverse if and only if det $A \neq 0$, and in this case

$$A^{-1} = \frac{1}{\det A} \operatorname{adj} A$$

Inverses and Linear Systems

Theorem 2.4.2

Suppose a system of *n* equations in *n* variables is written in matrix form as

 $A\mathbf{x} = \mathbf{b}$

If the $n \times n$ coefficient matrix A is invertible, the system has the unique solution

 $\boldsymbol{x} = A^{-1}\boldsymbol{b}$

Inverses and Linear Systems

 $\underline{Ex 6}$: Use matrix inverses to solve the system of equations

$$5x_1 - 3x_2 = -4 7x_1 + 4x_2 = 8$$

Finding the Inverse of a Matrix

Matrix Inversion Algorithm

If *A* is an invertible (square) matrix, there exists a sequence of elementary row operations that carry *A* to the identity matrix *I* of the same size, written $A \rightarrow I$. This same series of row operations carries *I* to A^{-1} ; that is, $I \rightarrow A^{-1}$. The algorithm can be summarized as follows:

 $\left[\begin{array}{cc}A & I\end{array}\right] \rightarrow \left[\begin{array}{cc}I & A^{-1}\end{array}\right]$

where the row operations on A and I are carried out simultaneously.

Theorem 2.4.3

If *A* is an $n \times n$ matrix, either *A* can be reduced to *I* by elementary row operations or it cannot. In the first case, the algorithm produces A^{-1} ; in the second case, A^{-1} does not exist.

Finding the Inverse of a Matrix

Ex 7: Use the inversion algorithm to find the inverse of

$$A = \left[\begin{array}{rrr} 2 & 7 & 1 \\ 1 & 4 & -1 \\ 1 & 3 & 0 \end{array} \right]$$

Finding the Inverse of a Matrix

Ex 7: Use the inversion algorithm to find the inverse of

$$A = \left[\begin{array}{rrr} 2 & 7 & 1 \\ 1 & 4 & -1 \\ 1 & 3 & 0 \end{array} \right]$$

Cancellation Laws

Let *A* be an invertible matrix. Show that:

- 1. If AB = AC, then B = C.
- 2. If BA = CA, then B = C.

If *A* and *B* are invertible $n \times n$ matrices, show that their product *AB* is also invertible and $(AB)^{-1} = B^{-1}A^{-1}$.

Theorem 2.4.4

All the following matrices are square matrices of the same size.

- 1. *I* is invertible and $I^{-1} = I$.
- 2. If *A* is invertible, so is A^{-1} , and $(A^{-1})^{-1} = A$.
- 3. If A and B are invertible, so is AB, and $(AB)^{-1} = B^{-1}A^{-1}$.
- 4. If A_1, A_2, \ldots, A_k are all invertible, so is their product $A_1A_2 \cdots A_k$, and

$$(A_1A_2\cdots A_k)^{-1} = A_k^{-1}\cdots A_2^{-1}A_1^{-1}.$$

- 5. If A is invertible, so is A^k for any $k \ge 1$, and $(A^k)^{-1} = (A^{-1})^k$.
- 6. If *A* is invertible and $a \neq 0$ is a number, then *aA* is invertible and $(aA)^{-1} = \frac{1}{a}A^{-1}$.
- 7. If A is invertible, so is its transpose A^T , and $(A^T)^{-1} = (A^{-1})^T$.

Corollary 2.4.1

A square matrix A is invertible if and only if A^T is invertible.

Ex 8: Find A if
$$(A^T - 2I)^{-1} = \begin{bmatrix} 2 & 1 \\ -1 & 0 \end{bmatrix}$$

_

Theorem 2.4.5: Inverse Theorem

The following conditions are equivalent for an $n \times n$ matrix A:

- 1. A is invertible.
- 2. The homogeneous system $A\mathbf{x} = \mathbf{0}$ has only the trivial solution $\mathbf{x} = \mathbf{0}$.
- 3. A can be carried to the identity matrix I_n by elementary row operations.
- 4. The system $A\mathbf{x} = \mathbf{b}$ has at least one solution \mathbf{x} for every choice of column \mathbf{b} .
- 5. There exists an $n \times n$ matrix *C* such that $AC = I_n$.

Corollary 2.4.1

If *A* and *C* are square matrices such that AC = I, then also CA = I. In particular, both *A* and *C* are invertible, $C = A^{-1}$, and $A = C^{-1}$.

Corollary 2.4.2

An $n \times n$ matrix A is invertible if and only if rank A = n.